Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Nanocarbon 2024 aluminum composites with 0.5 vol. % and 1 vol. % of graphene nanoplatelets and 1 vol. % and 2 vol. % of activated nanocarbon were manufactured through induction casting. The effect of the reinforcements and heat treatment on the performance of the composites was examined. Analysis of the microstructure of the composites before heat treatment suggested the homogeneous dispersion of reinforcements and the absence of secondary carbide or oxide phases. The presence of carbon nanoparticles had a significant impact on the microstructural characteristics of the matrix. This behavior was further enhanced after the heat treatment. The mechanical and damping properties were evaluated with the uniaxial compression test, micro Vickers hardness test, and dynamic mechanical analysis. The yield strength and ultimate strength were improved up to 28% (1 vol. % of graphene nanoplatelets) and 45% (0.5 vol. % of graphene nanoplatelets), respectively, compared to the as-cast 2024 aluminum. Similarly, compared to the heat-treated 2024 aluminum, the composites increased up to 56% (0.5 vol. % of graphene nanoplatelets) and 57% (0.5 vol. % of graphene nanoplatelets) in yield strength and ultimate strength, respectively. Likewise, the hardness of the samples was up to 33% (1 vol. % of graphene nanoplatelets) higher than that of the as-cast 2024 aluminum, and up to 31% (2 vol. % of activated nanocarbon) with respect to the heat-treated 2024 aluminum. The damping properties of the nanocarbon–aluminum composites were determined at variable temperatures and strain amplitudes. The results indicate that damping properties improved for the composites without heat treatment. As a result, it is demonstrated that using small volume fractions of nanocarbon allotropes enhanced the mechanical properties for both with- and without-heat treatment with a limited loss of plastic deformation before failure for the 2024 aluminum matrix.more » « less
-
6061 aluminum composites with 0.5 and 1 vol. % graphene nanoplatelets as well as 1 and 2 vol. % activated nanocarbon were manufactured by a powder metallurgy method. Scanning electron microscopy and Raman spectroscopy were used to study the morphology, structure, and distribution of nanocarbon reinforcements in the composite samples. Density Functional Theory (DFT) calculations were performed to understand the aluminum-carbon bonding and the effects of hybridized networks of carbon atoms on nanocarbon aluminum matrix composites. Scanning electron microscopy showed the good distribution and low agglomeration tendencies of nanoparticles in the composites. The formation of secondary phases at the materials interface was not detected in the hot-pressed composites. Raman spectroscopy showed structural changes in the reinforced composites after the manufacturing process. The results from Density Functional Theory calculations suggest that it is thermodynamically possible to form carbon rings in the aluminum matrix, which may be responsible for the improved mechanical strength. Our results also suggest that these carbon networks are graphene-like, which also agrees with the Raman spectroscopy data. Micro-Vickers hardness and compressive tests were used to determine the mechanical properties of the samples. Composites presented enhanced hardness, yield and ultimate strength compared to the 6061 aluminum alloy with no nanocarbon reinforcement. Ductility was also affected, as shown by the reduction in elongation and by the number of dimples in the fractured surfaces of the materials.more » « less
-
Embedding carbon in metals has long been known to enhance the mechanical properties of metal carbon composites. We report the possibility of growing Al–C composites by the hot isostatic pressing method, with carbon embedded into an Al lattice in graphitic form without the formation of Al4C3. Raman spectroscopy confirms the formation of sp2-hybridized carbon clusters in the aluminum lattice. The bulk moduli of the samples were measured to be between 60 and 100 GPa. From the results of first principles density functional theory calculations, we show that the formation of sp2-hybridized carbon clusters is more stable than having isolated C scatterers in aluminum. Our results show that the extended network of C clusters shows a higher bulk modulus while isolated scattering centers could lower the bulk modulus. We explain this behavior with the analysis of total charge distribution. Localization of charge density decreases materials’ ability to respond to external stress, thus showing a reduced bulk modulus. Some defect configuration may reduce the symmetry while others keep the symmetry of the host configuration even for the same chemical composition of Al–C composites.more » « less
An official website of the United States government
